45 research outputs found

    Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials

    No full text
    Highly efficient, large area OPV modules achieving full area efficiencies of up to 93% of the reference small area cells are reported. The way to a no-loss up-scaling process is highlighted: photoelectrical conversion efficiencies of 5.3% are achieved on rigid modules and of 4.2% on flexible, roll coated ones, employing a commercially available photoactive material. Exceptionally high geometric fill factors (98.5%), achieved via structuring by ultrashort laser pulses, with interconnection widths below 100 ÎŒm are demonstrated

    Nano-morphology characterization of organic bulk heterojunctions based on mono and bis-adduct fullerenes

    No full text
    We have studied organic bulk heterojunction photovoltaic devices based on a bridged-bithiophene donor-acceptor type low-band gap polymer blended with PCBM and bis-PCBM. The impact of the molecular arrangement is discussed in terms of the correlation between the solar-cell performance and the degree of crystallization. Differential scanning calorimetry (DSC) and grazing-incidence X-ray diffraction (GIXRD) prove that films with bis-PCBM typically result in more amorphous blends than comparable films with PCBM. Electron tomography (ET) is used to visualize the three dimensional morphology of photoactive layers, confirming the presence of nanofibers, formed in different scales through the thickness in the blended films with mono and bis-fullerenes. (C) 2012 Elsevier B.V. All rights reserve

    Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules

    No full text
    Inline printing and coating methods have been demonstrated to enable a high technical yield of fully roll-to-roll processed polymer tandem solar cell modules. We demonstrate generality by employing different material sets and also describe how the ink systems must be carefully co-developed in order to reach the ambitious objective of a fully printed and coated 14-layer flexible tandem solar cell stack. The roll-to-roll methodologies involved are flexographic printing, rotary screen printing, slot-die coating, X-ray scattering, electrical testing and UV-lamination. Their combination enables the manufacture of completely functional devices in exceptionally high yields. Critical to the ink and process development is a carefully chosen technology transfer to industry method where first a roll coater is employed enabling contactless stack build up, followed by a small roll-to-roll coater fitted to an X-ray machine enabling in situ studies of wet ink deposition and drying mechanisms, ultimately elucidating how a robust inline processed recombination layer is key to a high technical yield. Finally, the transfer to full roll-to-roll processing is demonstrated
    corecore